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Abstract. We study the spectral statistics for quantized skew translations on the torus, which
are ergodic but not mixing for irrational parameters. It is shown explicitly that in this case the
level-spacing distribution and other common spectral statistics, like the number variance, do not
exist in the semiclassical limit.

Introduction

One of the central questions in quantum chaos is how the asymptotic distribution of the
energy levels of a quantum system depends on the behaviour of the corresponding classical
dynamical system. For integrable systems the spectral statistics have been conjectured [1]
to be Poissonian, whereas chaotic systems have been conjectured [2] to be described by
random matrix theory (like the Gaussian orthogonal ensemble for systems with time-reversal
symmetry). Both conjectures are supported by many numerical studies. However, in both
cases exceptions are known: so-called arithmetic systems (see, e.g., [3–7]) show Poissonian
spectral statistics despite being strongly chaotic. Another example showing non-generic
spectral statistics are quantized cat maps [8,9]. As an example of a class of integrable systems
the eigenvalue statistics for flat tori are studied in [10]. It is proven that the pair correlation
function is Poissonian for a set of full Lebesgue measures in the parameter space of tori, but
that it does not exist for a set of second Baire categories (a topologically large set). Explicit
examples of tori with a Poissonian pair correlation function are given in [11]. A further class
of integrable systems showing exceptional behaviour are harmonic oscillators, for which the
nearest-neighbour level spacing and other spectral statistics do not possess a limit distribution,
see e.g. [1,12–16] and references therein.

An important class of model systems for studies in quantum chaos arise from the
quantization of area-preserving maps, see e.g. [8, 17] and references therein. In this paper
we study the spectral statistics, i.e. the distribution of eigenphases, for the class of quantized
skew translations on the torus (also called parabolic maps) [18–20].

Spectral statistics

A particular example of a skew translation on the torusT2 (see e.g. [21]) is defined by(
p

q

)
Aα→
(
p + α
q + 2p

)
mod 1 (1)
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whereα ∈ R+ determines the dynamical behaviour: for rationalα the mapping is not ergodic,
whereas for irrationalα the map is ergodic and, in particular, uniquely ergodic [22], i.e. there
is only one invariant ergodic measure, a situation rarely encountered for a dynamical system.
This implies thatAα does not possess any periodic points forα irrational. Moreover,Aα is not
weakly mixing and thus also not mixing, see e.g. [21].

A quantization of an area-preserving map on the torus is given by a sequence of unitary
time evolution operatorsUN defined on anN -dimensional Hilbert space, whereN → ∞
corresponds to the semiclassical limit. For quantization of these skew translations we use
the one proposed in [20], which is based on considering appropriate rational approximations
aN/N to α. That is, for a given irrationalα andN ∈ N there is a uniqueaN ∈ N defined by
the condition ∣∣∣α − aN

N

∣∣∣ < 1

2N
. (2)

Then the propagatorUN can be expressed in the position representation by theN ×N unitary
matrix

(UN)kj = 1

N

N−1∑
l=0

exp

(
2π i

N
(lk − (l − aN)2 − (l − aN)j)

)
(3)

with j, k ∈ {0, 1, . . . , N−1}. One investigates the eigenvalues e
2π i
N
φj ofUN , whereφj ∈ [0, N [

andj ∈ {0, . . . , N − 1}. The spectral density%(φ) is given by

%(φ) :=
N−1∑
j=0

∑
k∈Z

δ

(
2π

N
(φ − φj )− 2πk

)
(4)

and using the Poisson summation formula%(φ) can be expressed in terms ofUN by

%(φ) = 1

2π

∑
l∈Z

e
2π i
N
lφ TrUl

N . (5)

For the skew translations the eigenphases of the matrixUN can be determined explicitly [20]:

φη,l = lD − η2 + ηaN − a2
N

(M − 1)(2M − 1)

6
modN (6)

with η ∈ {1, . . . , D}, l ∈ {0, . . . ,M − 1} andM = N/D, whereD = gcd(aN,N) is the
greatest common divisor ofaN andN .

An important statistics is the level-spacing distribution, which is the probability density
for the distribution of the distancesφj+1 − φj between (unfolded) eigenphasesφj ∈ [0, N [.
More precisely, one considers (withφN := φ0)

lim
N→∞

#{j < N | a 6 φj+1− φj 6 b}
N

=
∫ b

a

P (s) ds (7)

if a limit distributionP(s) exists. From equation (6) followsφη,l+D = φη,l+1 and consequently
the spectrum is periodic with periodD. Moreover, the last term in equation (6) is independent
of η and l such that for the level-spacing distribution it is sufficient to study the reduced
spectrum

ϕη := −η2 + ηaN modD = −η2 modD (8)

with η ∈ {1, . . . , D}. For a fixedα ∈ R+ and a givenN , equation (2) fixes a rational
approximantaN ∈ N and alsoD = gcd(aN,N). Let us consider three special cases. First
assume thatD = 1. Then the reduced spectrum equation (8) consists of just one number, i.e.
the original spectrum (6) is completely rigid, leading to a level-spacing distribution

PD=1(s) = δ(s − 1). (9)
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AssumingD = 2 we get for the reduced spectrum

ϕ1 = −1 mod 2≡ 1 and ϕ2 = −4 mod 2≡ 0. (10)

Thus the spectrum equation (6) is composed of two subsequencesφ1,l , φ2,l with an equidistant
spacing ofD = 2. Since these two subsequences are shifted with respect to each other by
3 mod 2≡ 1, we obtain for the level-spacing distributionPD=2(s) = δ(s − 1) as in the case
whereD = 1. Finally, we consider the special caseD = 3. The reduced spectrum is given by

ϕ1 = −1 mod 3≡ 2 ϕ2 = −4 mod 3≡ 2 and ϕ3 = −9 mod 3≡ 0. (11)

Thus the spectrum (6) consists of three subsequences. Two of them,φ1,l andφ2,l , lead to
the same eigenphases, i.e. the spacing between them is zero. The spacing between these
two subsequences and the third subsequence is 2 and 1, respectively. Thus we get for the
level-spacing distribution

PD=3(s) = 1
3[δ(s) + δ(s − 1) + δ(s − 2)]. (12)

Using the cases ofD = 1 andD = 3 we show that there is no limit distribution of the level-
spacing distribution for the quantized skew translations in the limitN → ∞ by an explicit
construction of two different limit points of the sequence of level-spacing distributions.

A general result from the approximation theory of irrational numbers, see e.g. [23], asserts
that for any irrationalα there exists an infinite sequence of pairs(aN,N) with aN,N ∈ N and
gcd(aN,N) = 1 such that∣∣∣α − aN

N

∣∣∣ < 1

N2
. (13)

All these pairs are approximations fulfilling equation (2). If(aN,N) is such an approximation
then(aN ′ , N ′) = (D′aN,D′N) for N > 2D′ is also a good approximation. This follows from∣∣∣α − aN ′

N ′

∣∣∣ = ∣∣∣α − aN
N

∣∣∣ < 1

N2
6 1

2D′N
= 1

2N ′
. (14)

This implies that for eachD ∈ N there is an infinite sequence of pairs(aN,N) with
D = gcd(aN,N) fulfilling equation (2). sequence ofD values in the limitN →∞. With the
explicit calculation of the level-spacing distributionP(s) forD = 1 andD = 3 we obtain two
infinite sequences for which the level-spacing distributions are different. Consequently there
is no limit of the level-spacing distribution asN →∞.

Another commonly used statistics is the number variance which measures long-range
correlations in the spectrum. For quantized maps with unfolded eigenphasesφj ∈ [0, N [ the
number variance is defined by

62(L;N) := 1

N

∫ N

0
(N (φ +L)−N (φ)− L)2 dφ (15)

whereN (φ) := ∫ φ
0 %(φ

′) dφ′ is the integrated spectral density. Notice that forL 6 N we
have62(L,N) = 62(N − L,N).

Using equation (4) the number variance can be expressed in terms of the propagatorUN

62(L;N) = 2

π2

∞∑
n=1

1

n2
sin2

(
nπL

N

)
|TrUn

N |2. (16)

From the explicit expression (6) for the eigenphases one obtains

TrUn
N =

D∑
η=1

M−1∑
l=0

exp(nφη,l)
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Figure 1. Number variance for the quantized skew translations on the torus forD = 1, 2, 3, 6, 8
andD = 9.

=
D∑
η=1

M−1∑
l=0

exp

(
2π i

N
n

(
lD − η2 + ηaN − a2

N

(M − 1)(2M − 1)

6

))

= Mδ(n modM),0

D∑
η=1

exp

(
2π i

N
n

(
−η2 + ηaN − a2

N

(M − 1)(2M − 1)

6

))
. (17)

This implies for the number variance of quantized skew maps withD = gcd(aN,N)

62
D(L) =

2

π2

∞∑
k=1

1

k2
sin2

(
kπL

D

)∣∣∣∣ D∑
η=1

exp

(
− 2π i

D
kη2

)∣∣∣∣2. (18)

Notice, that62
D(L) does not depend explicitly onaN andN , but only on their greatest common

divisorD. ForD = 1 we get

62
D=1(L) =

2

π2

∞∑
k=1

1

k2
sin2(kπL) = (L− bLc) + (L− bLc)2 (19)

wherebxc denotes the integer part ofx. The same result also holds forD = 2. In the case of
D = 3 the computation of the Fourier series involved leads to

62
D=3(L;N) = −

8

9
+ 5F

(
L

3

)
+ 2F

(
L− 2

3

)
+ 2F

(
L + 2

3

)
(20)

where we definedF(x) := x − bxc + (x − bxc)2. Thus the number variance is different for
D = 1 andD = 3, and consequently there is also no limit of the number variance asN →∞.

In figure 1 we show four examples for the behaviour of the number variance in dependence
onD. The casesD = 2 andD = 6 coincide withD = 1 andD = 3 respectively, which
illustrates thatD is not necessarily the smallest period of62

D(L;D). A higher number of
degeneracies in the reduced spectrum equation (8), as for example in the case ofD = 8, leads
to large values of the number variance.
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Discussion

The non-existence of limit distributions for the spectral statistics of quantized skew translations
provides another counterexample to the universality of energy-level statistics observed in
many situations. In contrast to the case of flat tori one has for the class of quantized skew
transformations explicit examples for which the spectral statistics do not exist. There are
different ways to interpret this result. On the one hand, this example may be seen as an
indication that in order to obtain the expected random matrix behaviour not just ergodicity
but also the mixing property of the classical system is needed. On the other hand, one may
consider this class of systems as being quite non-generic, in a similar manner as the quantized
cat maps. Finally, we would like to remark that it may be possible that certain spectral statistics
exist forN →∞ when one averages over a (possibly increasing) range of differentN , as was
shown for the quantized cat maps [9].

We would like to thank Professor Dr F Steiner and Roman Schubert for useful discussions
and comments. AB acknowledges support by the Deutsche Forschungsgemeinschaft under
contract no DFG-Ste 241/7-3.
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